skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rebeiro, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. We used the 138Baðd; αÞ reaction to carry out an in-depth study of states in 136Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1þ level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments. We identify for the first time candidate metastable states in 136Cs, which would allow a realtime detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for 136Xe neutrinoless double beta decay.We find that one of these Hamiltonians, which also systematically underestimates the NME compared with the others, dramatically fails to describe the observed low-energy 136Cs spectrum, while the other two show reasonably good agreement. 
    more » « less
  4. Abstract Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0 $$\nu \beta \beta $$ ν β β ), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0 $$\nu \beta \beta $$ ν β β of $$^{136}$$ 136 Xe with projected half-life sensitivity of $$1.35\times 10^{28}$$ 1.35 × 10 28  yr. To reach this sensitivity, the design goal for nEXO is $$\le $$ ≤ 1% energy resolution at the decay Q -value ( $$2458.07\pm 0.31$$ 2458.07 ± 0.31  keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163 K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay Q -value for the nEXO design. 
    more » « less
  5. Abstract Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities. 
    more » « less